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Science and repeatability
These steps must be repeatable in order to dependably predict any future results. (Wikipaedia)

The Book of Optics by Ibn al-Haytham (1021): conscious
reliance upon repeated observations to infer regularities.

Repeated observations can come from:
I Performing controlled experiments, or
I Selecting from a stream of data.

Small correlation structure leads to independent observations.

History may have long correlations: not independent.

I Cosmic Variance: the problem of one universe.

I Large planets have lower density: rule?

I Widespread language similarities: cognitive structure?

I Four limbs: adaptation?

I Similarity across religions: common truth?



Galton’s Problem

Ought we ... to begin by discussing each separate species—man, lion, ox, and the like—taking each kind in hand
independently of the rest ... (De partibus Animalium)

In 1889 Sir Edward Tylor presented a paper on correlations
between marital systems and societal complexity.

Sir Francis Galton pointed out confounding by borrowing and
common descent.

General problem of dealing with autocorrelation called Galton’s
problem by Raoul Naroll in 1961.

If the cause of the correlation is known, one can reduce it by
various methods: data selection, multiple regression, or
lagging.

How do we know what is independent?



Synchronic vs. Diachronic
Problem is one of modeling: does synchronic data have
enough information about

I Past situations?
I Process rules?

Often, causal structure restricted to a simply connected
directed network (tree).

The independence structure of the tree al-
lows us to look at multiple independent re-
alizations.

When tree can be reconstructed, it allows
us to deduce diachronic processes from syn-
chronic data alone up to an unknown time
scale.
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Highly constrained prblem: n(n− 1)/2 distances among n taxa
has only 2n− 2 independent parameters.



State v Prcess
‘State’ is

I a statistic of the past;
I sufficient to predict the future.

Changes an integro-differential equation into differential
equations:
Future State = Change Rule (Past State)
Change Rule is process.
Time scale separation: State changes faster than Process.
State variables few compared to history:

I Newton’s laws: only position, velocity, and environment.

I State of society: Institutions, norms, knowledge, and myth.

I Linguistics: Language as spoken.
Not always obvious:

I Temperature of floating bodies for motion.
I Remembered poetry on language.
I Family traditions in societal change.



Branching Processes

Branching processes have simple causal structure.

Past and present conditionally indepen-
dent given the state.

State at a branch point (‘node’) splits his-
tory into three conditionally independent
sectors.

Almost stationary process: the probabilis-
tic rules of change are constant.
Determine the process by fitting to the
data.
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Timescales

Example:
I Large number of almost independent traits.
I Varying at different rates.
I Rates constant, though different for different traits.



Fast Traits
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Almost random patterns. No correlations.



Slow Traits
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Essentially constant. Replicated initial conditions.



Informative Traits
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Intermediate: Traits that change about once on the timescale
I partition the data
I consistent with a tree
I no correlations except tree concordance

Excess of traits partitioned consistent with the same tree.
Hierarchical structuring of non-coextensive traits.



Hierarchical Structure

Fast Random Traits

Hierarchical Structure

Implicational scaling



Stochastic Processes

A stochastic process described by a probability law on states.
Usually taken to be infinitely divisible

p(S0 → St; t) =
∑
St′

p(S0 → St′ ; t
′) p(St′ → St; t− t′)

Leads to a differential formulation:

dp(S; t)

dt
=

∑
S′
T (S, S

′
; t) p(S

′
; t)

which can be formally solved:

p(S; t) =
∑
S′

[T exp

∫ t

t0

T (S, S
′
; t)dt] p(S

′
; t0)

This allows us to calculate the probability of any set of
observations if we are given a model T and the tree that the
data was generated under.



Forward process; Backward inference
Model is constant! How do we determine it?

I Choose model parameters.
I Forward: Either simulate or calculate expected

observations.
I Evaluate how expected the actual observations are.
I Backward: Vary model and choose best.

How does this perform with large amount of independent data?
True Model M : Independent observations with prbability {pi}.
Observation i seen with frequency fi ≈ pi.

Let model Mj assign it probablities pij . Log Total probability

lnL(Mj) ≡ ln p(Data |Mj) =
∑
i

fi ln pij .

Maximize over j subject to
∑

i pij = 1: pij = fi.

The model chosen by Maximum Likelihood is consistent.



Maximum Likelihood Method

Maximum Likelihood Estimate is efficient.

Cramér-Rao inequality: sample-to-sample fluctuation of an estimate b
for parameter β bounded by:

σ2
b ≥

(
∂2 lnL
∂β2

)−1〈
∂b

∂β

〉2

.

Sample fluctuation of an estimate cannot be smaller than product of

I Sensitivity of likelihood to parameter.

I Dependence of estimate on parameter.

Equality often reached by Maximum Likelihood estimate.



Example

Toss a loaded coin many times: how do we determine
probability of heads?

As the probability of heads increases, the fraction of heads
increases. So, does the number of runs of heads.

Can use different features of the data, e.g.,
I Fraction of heads.
I Average length of runs of heads.

Maximum likelihood chooses fraction of heads, because it is
most informative.

Similarly, no need to sort out non-informative fast and slow
traits: Maximum Likelihood method weights each trait at its
proper time depth.



Model misspecification

Likelihood based methods are ideal if
I There is enough data.
I Model in the specified class.

When model does not allow features of the data: one can get
bizarre results.
Model: Bengali derived from the Vedic language of India.
We want to find how long back Vedic was spoken.
If we do not recognize that many modern words are actually
from Persian, English, Portuguese, Dravidian, Austrasiatic, etc.,
we will get a very wrong answer.
But, if we allow a probability for random new word: we start
getting reasonable results.
Rare forgotten processes can sometimes be replaced by
uncorrelated random processes.



Likelihood Ratio
For Normal distribution, −2 lnL ≡ χ2 +

∑
ln(2πσ2).

I Maximum Likelihood is a generalization of minimum χ2.
I Provides confidence intervals.

Adding parameters gives better fit even at random.
Best fit models with δ more parameters: 2∆ lnL ∼ χ2

δ .
I Quantifies overfitting.

This can be generalized to Bayesian posterior

p(Mi | Data) ∝ p(Mi)L(Mi) .

I Can incorporate prior knowledge.
I Penalizes extra parameters more.
I Can be evaluated by a Markov Chain Monte Carlo.



Markov Chain Monte Carlo
How to sample a random distribution?
Replace ensemble average by time average. Choices:

1. Design a deterministic ergodic process.
2. Use Markov processes.

If there is a random Markov process, p(X → Y ), such that
I p(X→Y )

p(Y→X) = π(Y )
π(X) ,

I Every state is reachable in one or more moves,
I The process is not periodic, and
I The expected number of moves to return is finite,

Then, this ergodic process samples X in proportion to π(X).
Much easier problem because p(X → Y ) is local.
Example:

I Choose a small neighbourhood {Xj} for each Xi.

I Choose p(Xi → Xj) = 1 if π(Xj) > π(Xi).

I Choose p(Xi → Xj) = π(Xi)/π(Xj) otherwise.

I Check the criteria.



Information Criteria

How do we decide when a richer model should be used?

Three problems with increasing parameters:
I More parameters make estimation more noisy.
I More parameter models more sensitive to noisy estimates.
I Many more multiparameter models to choose from:

fairness?

Akaike Information Criterion: Choose number of parameters to
maximize predictability.
Bayesian Information Criterion: Use a prior on number of
parameters; minimize unassumed coincidences.



Akaike Information Criterion

Two parts:
I Parameter fits non-reproducible noise.
I Parameter mispredicts future observations.

Let,
I θ be the true model,
I X be some observations,
I Y be similar future observations.

Let θX be the model estimated from X: i.e., the model that
maximizes the likelihood L(θX |X). But, what we really want is a
model that assigns high probability p(Y ) to future observations.



Asymptotically, for a k-parameter model,

EX logL(θX |X) = EX logL(θ|X) +
k

2
,

because it fits some noise.

But, the noise is different on almost every dataset,
so θX is worse than θ except on X.

In particular, asymptotically, on average

EY logL(θ|Y ) = EY EX logL(θX |Y ) +
k

2
.

Thus, on average,

EX,Y log p(Y |θX) = EX logL(θX |X)− k .

For best predictability, maximize this, i.e., minimize
AIC ≡ −2 logL+ 2k.



Bayesian Information Criterion

Data can’t prove a hypothesis: it can rule it out.

Bayesian prior: how much support from data do we need to
rule out the hypothesis?

Uniform prior: Each hypothesis has equal a priori probability
= 1/Number of hypothesis.

If lower parameter model a point in higher parameter space:
zero a priori probability; needs infinite data to override!

Use distributions (Dirac δ functions): total probability of lower
parameter model equal to total probability of higher parameter
model.



This is equivalent to letting data resolution decide the ‘size’ of
the lower dimensional point.

If data sample is of size n, error bars are size 1/
√
n. So, a k

lower-dimensional point has relative volume exp−k
2 log n.

Equal probability means, lower dimensional model has
correspondingly larger a priori weight compared to every point
in the higher dimension: so, choosing a higher parameter
model requires that much more evidence.

So, to maximize Bayesian posterior, minimize
BIC ≡ −2 logL+ k log n.

Since sample size arbitrary: being just able to rule out lower dimensional model is surprising. BIC requires that the

fit be better in proportion to data.



Example: phylogeny in biology
Can one use these methods to infer history of life? Is history of
life tree-like?

But history of what?

Traits are inherited

I From parents.

I From peers.

I From physical environment.

I From previous changes in environment . . . .

Look for a large co-inherited bundle of traits. Define this as
‘vertical transmission.’ Other inheritences referred to this
baseline.

One such large bundle: genetic traits.



Genotype

Most of life has a strong genotype-phenotype separation.

I Genotype encodes heredity: phenotype is selectable.
I Genotype to phenotype program not easily invertible.
I Genotype changes mainly dictated by chemistry: almost

stationary process.

Genotype changes randomly, weakly filtered by selection. Vast
amount of almost independent traits, almost stationary process.

I Most of life close to fitness maximum.
I Robustness: Few changes fatal, most neutral.
I High mutation rates harmful.

(Eigen’s law: no more than 1 change/unit/generation.)
I Mutation rate maximized for adaptability.



Genetic Change

Most of the changes are ‘point mutations’:

GTAAGACAGTATGATCAGATACTCATAGAAATCTGTGGA →
GTAAAACAATATGATCAGGTATCTATAGAAATTTGTGGA .

Some regions are prone to insertions or deletions.

AGTAATACTACTAGTAAT ↔
ACT ATACTA AAT .

Daughter may form from parts of different parents

...AGGATGGAC...

...TTTATGCTG...
→ ...AGGATGCTG...



Stationary Independent Sites Model
Consider only point mutations and assume

I many sites change at different rates ri,
I rates are almost constant over time,
I relative probabilities of base substitutions T the same, and
I sites in the genome change almost independently.
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‘Feynmann Diagram’:

L = (
∑
ik

pi(e
r1xT )Ai(e

r1yT )ki(e
r1vT )Ck(e

r1wT )Gk)

× (
∑
jl

pj(e
r2xT )Tj(e

r2yT )lj(e
r2vT )Al(e

r2wT )Cl) ,

where p are the initial probabilities.

I Propose reconstructions
I Evaluate reconstructions
I Find history and process that give best reconstructions.



Base substitution models
Base substitution often due to chemical ‘error’.
Some bases more similar than others:

Wikimedia

Usually, C ↔ T and G↔ A faster than the rest.

The calculation simplifies further if
I p is stationary distribution: Tp = 0, and
I Tijpj = Tjipi ∀i, j.



HIV: A worldwide pandemic



HIV: A social problem
Affects the sexually active (productive) age group.

Destroys families: orphans and the aged.

Asymptomatic phase before AIDS: 9 years untreated.

Escapes single drugs within a couple of days. Escapes double
combinations in years.

Prevention difficult

I lifestyle changes (e.g.,
monogamy, condoms,
circumcision)

I screening blood
I sterilizing needles
I expensive drugs

Medipedia



HIV: The Virus
We know
the structure, the function,

Adcock Ingram

the genetics,

HIV Database

and the infection dynamics.

McMichael et al.,
Nat. Rev. Immun. 2010 Jan; 10(1):11–23.



HIV: Extreme Diversity
No effective vaccine yet!

HIV Influenza
Archer and Robertson, Smith et al.,

AIDS 2007 Aug 20; 21(13):1693–1700 Science 2004 Jul 16: 305(5682):371–376

Need to understand biology and evolution.



HIV

HIV is a virus about 9719 bases long. More than 1200 almost
complete sequences known.

The rates vary from site to site.

Different kinds of changes have different probabilities:
Transversion:Transition CT:Transition GA :: 1:3:4



Error Model

I Random substitution processes imply Poisson error on the
branch lengths.

I Sampling time known only to one year.
I Virus integrates into host DNA, stops evolving and is

expressed much later. Assume an exponential latency,
e−t/τ , with unknown parameter τ .

B)

-3 -2 -1 0 1 - 0

=*
τ

A) C)

D)

I Use Maximum Likelihood to estimate τ and the best fit line.



Model verification

This model correctly predicts the time of the earliest HIV
sequence:
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Origin of HIV

I Tested two genes:
I env (gp160): 141 sequences of 2038 bases each.
I gag: 64 sequences of 1363 bases each.

I Results consistent:
I env: estimate 1931; 95% CI 1915 – 1941
I gag: estimate 1934; 95% CI 1869 – 1950
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Uses of phylogeny: Coalescent Theory

In a population of size N , two randomly selected strains had a
common parent with probability 1/N .

Phylogeny provides estimates of relative times of common
ancestors.

ContractingConstant Growing

More ‘coalescenses’ when population size small.

In randomly mixed situations, can estimate populations in the
past!



Example: Growth of HIV infections

Study HIV within Democratic Replubic of Congo.
Fits the model

N = N0(α+ (1− α)ert)



Uses of phylogeny: centralized sequences

Influenza phylogenetic and immunological distance correlated

Smith et al.
Science 2004 Jul 16: 305(5682):371–376

Ancestral HIV half the distance to current circulating strains.
Reconstruct ancestor as vaccine reagent.



Uses of phylogeny: A Problem in HIV immunology
Cytotoxic T Lymphocytes (CTL) recognize and kill virally
infected cells.

Small bits of virus presented for recognition by class I Human
Leukocyte Antigen (HLA).

Halling-Brown, Ph.D. Thesis

3�

2
� 1�

�-microglobulin

en.wikipaedia:atropos235

Which bits of the virus (epitopes) are recognized by CTLs?



Solution

Direct Solution
Find the HLA type of the individual.
Find sequence positions where change is selected over time.
Construct overlapping stretches of small peptides.
Study binding.

Statistical Solution

Individuals differ in HLA.
If an epitope recognized, it may escape by changing.
Study a population and HIV extracted from them.
If an HIV sequence position correlates with host HLA, it is likely
to be in an epitope.



Incorrect Results!!!

89/202 (37–51%) positions in the protein Pol correlated with
host HLA.

11 (3–10%) significant even after correction for multiple tests.
Moore et al., Science 2002 296:1439–1443.

A separate study: 346/624 (51–59%) positions correlated.

80 (10–16%) significant with a cutoff on false positive rate of
20%. Kiepiela et al., Nature 2004 432:769–775.

Conclusion:
CTL escape significant factor in shaping HIV
evolution.



C*1701

Dataset from Perth
dominated by B subtype.

All C*1701+ people in the
dataset are C subtype
infected. C*1701 common in south Africa,

south African epidemic dominated by C subtype.

All clades except B are
dominated by Leucine.

Valine is not changing to
Leucine in C*1701+ people.

Correlation better
explained by
common descent and
migration.



Phylogeny provides a Model of Covariance

In 1985 Felsenstein proposed phylogenetically independent
contrasts.

Consider a trait diffusing on a phylogenetic tree:
I The changes on each branch are

independent variables, with variance
given by branch length.

I The ancestral state can be
estimated from the descendants by
a mean, weighted by inverse branch
lengths.

I A contrast is normalized difference
between two daughter nodes:

A/σ2A −B/σ2B
1/σ2A + 1/σ2B
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Markovian Processes

In a Markov process, the changes at various instants,
conditioned by the state at that instant, are still independent: so
instead of looking at the state, one can look at the change.

This formalizes the intuitive problem noticed before: Valine was
not changing to Leucine in C*1701+ people.

So, we devise the following method:
I Calculate the ancestor of sequences
I Select cases with common ancestor.
I Correlate change or not change with feature.



Count

C*1701

In other words instead of look-
ing at a table like:

V Not-V
C*1701+ 0 7
Not C*1701+ 115 45

p = 0.0002

we should look at tables like:
V→ V→
V Not-V

C*1701+ 0 0
Not C*1701+ 75 7

p = 1



True correlaton

Restricted to the cases
when the parent is an
Aspargine, the daughter
changes when the
patient is B*4002+



Sensitivity and Specificity

The new method does correct for the phylogenetic artifact.

Without phylogenetic correction, silent mutations correlate at
the same rate with host HLA.
Silent: 10/153 (3–12%)
Non-silent: 138/1732 (7–9%)
Some silents are very significant: p < 0.00002.

With phylogenetic correction 62/80 significant cases due to
clade association, and only 7/80 strongly supported.

4/6 were known epitopes, and 2 more were later experimentally
found to be true.

Also performs well on synthetic data.



False Positives

Problem in this case was because
I HIV transmitted through social (sexual) contact.
I Human populations are not panmictic.
I HIV transmission clusters correlate with human genetics.

Time scales:
I Humans are only 104 generations old.
I Mutation rate 2.5× 10−8 per base per generation.
I Human genetic decorrelation time: > 108 generations.
I HIV only 2× 104 generations old.
I Mutation rate 2.3× 10−5 per base per generation.
I Most clusters at least a factor of 2 younger.
I HIV decorrelation time > 105 generations.

Phylogenetics remain important.



Missing true positives

But more generally, it is a question of statistical independence:
closely related pieces of evidence overcounted.
This can lead to false negatives as well as false positives.

Non-B subtype is
predominantly P, not Q,
and has no B*4002+ve.

Q→
not Q Q not Q Q

B*4002+ 4 2 4 2
B*4002- 14 76 4 76

p = 0.01 p = 0.00004



Structure from function

HIV escapes antibodies binding to protein.
Patterns of escape points to binding regions.
Conclusions about quaternary structure.
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Amino acid: D at pos 185 in gp160
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Results



Immunogenicity
Some antibodies neutralize many viruses. Rarely produced.
Some people make good antibodies.

Host genetics or viral genetics?



Results

All viral sites cluster in CCR5 coreceptor region.



Beyond Biology

Can these methods be applied to other historical sciences?

I Is trait inheritance more important than trait genesis?
I Are there individuals: stable collections of traits?
I Are states easy to define: a closed system?
I Is there vertical transmission: coinheritance bundles?
I Do the coinherited traits show hierarchical structure?
I Are their traits of differring rates?
I Are the distances explained by a tree?
I Is the change process stationary?

These conditions are probably satisfied in many fields, and
underlying laws may be discoverable.
Incorrect counting probably common: incorrect deduction of
laws.
Important to study historical processes quantitatively.


